首页> 外文OA文献 >Comparison of empirical study power in sample size calculation approaches for cluster randomized trials with varying cluster sizes andndash; a continuous outcome endpoint
【2h】

Comparison of empirical study power in sample size calculation approaches for cluster randomized trials with varying cluster sizes andndash; a continuous outcome endpoint

机译:在具有不同聚类大小的聚类随机试验的样本量计算方法中,实证研究能力的比较-连续结果终点

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Background: Cluster randomized trials (CRTs) are a popular trial design. In most CRTs, researchers assume equal cluster sizes when calculating sample sizes. When clusters vary, assuming equal sized clusters may result in low study power. There are two common approaches to sample size calculations for varying cluster sizes. One approach uses a harmonic mean (m̄H) of cluster sizes, while the other incorporates the squared coefficient of variation (cv2) of cluster sizes. We performed simulations to compare empirical power between the two methods as well as the arithmetic mean method for a continuous endpoint.Study design: We considered cluster sizes that follow uniform distributions and performed 20,000 simulations under each scenario. Endpoints were analyzed using: 1) an individual-level linear regression model with Gaussian random intercepts for clusters; 2) an individual-level t-statistic with cluster-robust standard errors; 3) a generalized estimating equations (GEE) model with exchangeable correlation structure; and 4) a GEE model with independent correlation structure and robust standard errors.Results: When the Gaussian random effects or the GEE model with exchangeable correlation structure was considered, the m̄H method had 80% power. The cv2 method had power of 85%–88%. However, when the data were analyzed using a t-statistic or the GEE model with independent correlation structure, the power of cv2 method was 80%. The m̄H method produced power of 71%–76%.Conclusion: The performance of the sample size methods depends on the data analysis approaches. The degree of disparity in power depends also on the intracluster correlation coefficient. These findings emphasize the maxim that researchers should consider methods of analysis when designing CRTs to allow for appropriate sample size calculations.Keywords: cluster randomized trial, varying cluster sizes, empirical power, harmonic mean, coefficient of variation, continuous endpoint
机译:背景:群集随机试验(CRT)是一种流行的试验设计。在大多数CRT中,研究人员在计算样本量时会假定簇大小相等。当聚类变化时,假设大小相等的聚类可能会导致学习能力降低。对于变化的簇大小,有两种常见的样本大小计算方法。一种方法使用簇大小的谐波均值(m̄H),另一种方法使用簇大小的平方变异系数(cv2)。我们进行了仿真以比较两种方法之间的经验能力以及连续端点的算术平均方法。研究设计:我们考虑了遵循均匀分布的簇大小,并在每种情况下进行了20,000次仿真。使用以下方法分析了端点:1)具有高斯随机截距的个体水平线性回归模型。 2)具有聚类鲁棒性标准误差的个人级别t统计量; 3)具有可交换相关结构的广义估计方程(GEE)模型;结果:当考虑高斯随机效应或具有可交换相关结构的GEE模型时,m̄H方法的功效为80%。 cv2方法的功效为85%–88%。但是,当使用t统计量或具有独立相关结构的GEE模型分析数据时,cv2方法的功效为80%。 m̄H方法产生的功效为71%–76%。结论:样本量方法的性能取决于数据分析方法。功率差异程度还取决于集群内相关系数。这些发现强调了研究人员在设计CRT时应考虑分析方法以进行适当的样本量计算的原则。关键词:聚类随机试验,变化的聚类大小,经验功效,谐波均值,变异系数,连续终点

著录项

  • 作者

    Mukaka, M; Moulton, L;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号